首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   102篇
  免费   4篇
  国内免费   3篇
  2023年   1篇
  2022年   3篇
  2020年   2篇
  2019年   1篇
  2018年   3篇
  2017年   3篇
  2016年   3篇
  2015年   3篇
  2014年   5篇
  2013年   36篇
  2012年   17篇
  2011年   2篇
  2010年   1篇
  2009年   4篇
  2008年   1篇
  2007年   1篇
  2006年   1篇
  2004年   1篇
  2003年   1篇
  2001年   2篇
  1998年   1篇
  1997年   1篇
  1991年   1篇
  1990年   1篇
  1984年   2篇
  1983年   6篇
  1980年   2篇
  1979年   1篇
  1977年   1篇
  1975年   1篇
  1973年   1篇
排序方式: 共有109条查询结果,搜索用时 124 毫秒
31.
Convenient methods for the rapid, parallel synthesis of diversely functionalized nanoparticles will enable discovery of novel formulations for drug delivery, biological imaging, and supported catalysis. In this report, we demonstrate parallel synthesis of brush-arm star polymer (BASP) nanoparticles by the "brush-first" method. In this method, a norbornene-terminated poly(ethylene glycol) (PEG) macromonomer (PEG-MM) is first polymerized via ring-opening metathesis polymerization (ROMP) to generate a living brush macroinitiator. Aliquots of this initiator stock solution are added to vials that contain varied amounts of a photodegradable bis-norbornene crosslinker. Exposure to crosslinker initiates a series of kinetically-controlled brush+brush and star+star coupling reactions that ultimately yields BASPs with cores comprised of the crosslinker and coronas comprised of PEG. The final BASP size depends on the amount of crosslinker added. We carry out the synthesis of three BASPs on the benchtop with no special precautions to remove air and moisture. The samples are characterized by gel permeation chromatography (GPC); results agreed closely with our previous report that utilized inert (glovebox) conditions. Key practical features, advantages, and potential disadvantages of the brush-first method are discussed.  相似文献   
32.
Metallic implants, especially titanium implants, are widely used in clinical applications. Tissue in-growth and integration to these implants in the tissues are important parameters for successful clinical outcomes. In order to improve tissue integration, porous metallic implants have being developed. Open porosity of metallic foams is very advantageous, since the pore areas can be functionalized without compromising the mechanical properties of the whole structure. Here we describe such modifications using porous titanium implants based on titanium microbeads. By using inherent physical properties such as hydrophobicity of titanium, it is possible to obtain hydrophobic pore gradients within microbead based metallic implants and at the same time to have a basement membrane mimic based on hydrophilic, natural polymers. 3D pore gradients are formed by synthetic polymers such as Poly-L-lactic acid (PLLA) by freeze-extraction method. 2D nanofibrillar surfaces are formed by using collagen/alginate followed by a crosslinking step with a natural crosslinker (genipin). This nanofibrillar film was built up by layer by layer (LbL) deposition method of the two oppositely charged molecules, collagen and alginate. Finally, an implant where different areas can accommodate different cell types, as this is necessary for many multicellular tissues, can be obtained. By, this way cellular movement in different directions by different cell types can be controlled. Such a system is described for the specific case of trachea regeneration, but it can be modified for other target organs. Analysis of cell migration and the possible methods for creating different pore gradients are elaborated. The next step in the analysis of such implants is their characterization after implantation. However, histological analysis of metallic implants is a long and cumbersome process, thus for monitoring host reaction to metallic implants in vivo an alternative method based on monitoring CGA and different blood proteins is also described. These methods can be used for developing in vitro custom-made migration and colonization tests and also be used for analysis of functionalized metallic implants in vivo without histology.  相似文献   
33.
Food intake in nectar-feeding animals is affected by food quality, their energetic demands, and the environmental conditions they face. These animals increase their food intake in response to a decrease in food quality, a behavior named “intake response”. However, their capacity to achieve compensatory feeding, in which they maintain a constant flux of energy, could be constrained by physiological processes. Here we evaluated how both a seasonal change in environmental conditions and physiological constraints affected the food ingestion in the bat Glossophaga soricina. We measured food intake rate during both the wet/warm and dry/cool seasons at sucrose solutions ranging from 146 to 1,022 mmol L−1. We expected that food intake and metabolic demands would be greater during the dry/cool season. Bats ingested ~20% more food in the dry/cool than in the wet/warm season. Regardless of season, bats were unable to achieve a constant flux of energy when facing the different sugar concentrations that we used in our experiments. This suggests that the rate of food intake is physiologically constrained in G. soricina. Using the digestive capacity of bats we modeled their food intake. The analytic model we used predicts that digestive limitations to ingest energy should have an important effect on the ecology of this species.  相似文献   
34.
With biobank research on the increase and the history of exploitation in Africa, it has become necessary to manage the transfer of human tissues across national boundaries. There are many accepted templates of Material Transfer Agreements (MTAs) that currently exist internationally. However, these templates do not address the specific concerns of South Africa and even of Africa as a continent. This article will examine three significantly important ethico‐legal concepts that were deliberated and carefully adapted by a South African Institution to suit the transfer of Human Biological Materials (HBMs) and associated data for biobank research, namely: informed consent; benefit sharing arrangements; and ownership together with intellectual property rights in human tissues. The discussion includes an analysis of current practice; the ethico‐legal challenges in the South African/African context; the decisions made with regard to how the related ethico‐legal challenges were addressed in the MTA; and justifications for implementing these decisions. The processes considered could be of benefit to other developing world countries who consider it necessary to manage the transfer of HBMs across national boundaries.  相似文献   
35.
Conjoining different semiconductor materials in a single nano-composite provides synthetic means for the development of novel optoelectronic materials offering a superior control over the spatial distribution of charge carriers across material interfaces. As this study demonstrates, a combination of donor-acceptor nanocrystal (NC) domains in a single nanoparticle can lead to the realization of efficient photocatalytic1-5 materials, while a layered assembly of donor- and acceptor-like nanocrystals films gives rise to photovoltaic materials.Initially the paper focuses on the synthesis of composite inorganic nanocrystals, comprising linearly stacked ZnSe, CdS, and Pt domains, which jointly promote photoinduced charge separation. These structures are used in aqueous solutions for the photocatalysis of water under solar radiation, resulting in the production of H2 gas. To enhance the photoinduced separation of charges, a nanorod morphology with a linear gradient originating from an intrinsic electric field is used5. The inter-domain energetics are then optimized to drive photogenerated electrons toward the Pt catalytic site while expelling the holes to the surface of ZnSe domains for sacrificial regeneration (via methanol). Here we show that the only efficient way to produce hydrogen is to use electron-donating ligands to passivate the surface states by tuning the energy level alignment at the semiconductor-ligand interface. Stable and efficient reduction of water is allowed by these ligands due to the fact that they fill vacancies in the valence band of the semiconductor domain, preventing energetic holes from degrading it. Specifically, we show that the energy of the hole is transferred to the ligand moiety, leaving the semiconductor domain functional. This enables us to return the entire nanocrystal-ligand system to a functional state, when the ligands are degraded, by simply adding fresh ligands to the system4.To promote a photovoltaic charge separation, we use a composite two-layer solid of PbS and TiO2 films. In this configuration, photoinduced electrons are injected into TiO2 and are subsequently picked up by an FTO electrode, while holes are channeled to a Au electrode via PbS layer6. To develop the latter we introduce a Semiconductor Matrix Encapsulated Nanocrystal Arrays (SMENA) strategy, which allows bonding PbS NCs into the surrounding matrix of CdS semiconductor. As a result, fabricated solids exhibit excellent thermal stability, attributed to the heteroepitaxial structure of nanocrystal-matrix interfaces, and show compelling light-harvesting performance in prototype solar cells7.  相似文献   
36.
There are numerous techniques such as photolithography, electron-beam lithography and soft-lithography that can be used to precisely pattern two dimensional (2D) structures. These technologies are mature, offer high precision and many of them can be implemented in a high-throughput manner. We leverage the advantages of planar lithography and combine them with self-folding methods1-20 wherein physical forces derived from surface tension or residual stress, are used to curve or fold planar structures into three dimensional (3D) structures. In doing so, we make it possible to mass produce precisely patterned static and reconfigurable particles that are challenging to synthesize.In this paper, we detail visualized experimental protocols to create patterned particles, notably, (a) permanently bonded, hollow, polyhedra that self-assemble and self-seal due to the minimization of surface energy of liquefied hinges21-23 and (b) grippers that self-fold due to residual stress powered hinges24,25. The specific protocol described can be used to create particles with overall sizes ranging from the micrometer to the centimeter length scales. Further, arbitrary patterns can be defined on the surfaces of the particles of importance in colloidal science, electronics, optics and medicine. More generally, the concept of self-assembling mechanically rigid particles with self-sealing hinges is applicable, with some process modifications, to the creation of particles at even smaller, 100 nm length scales22, 26 and with a range of materials including metals21, semiconductors9 and polymers27. With respect to residual stress powered actuation of reconfigurable grasping devices, our specific protocol utilizes chromium hinges of relevance to devices with sizes ranging from 100 μm to 2.5 mm. However, more generally, the concept of such tether-free residual stress powered actuation can be used with alternate high-stress materials such as heteroepitaxially deposited semiconductor films5,7 to possibly create even smaller nanoscale grasping devices.  相似文献   
37.
There are several methods of fabricating nanogaps with controlled spacings, but the precise control over the sub-nanometer spacing between two electrodes-and generating them in practical quantities-is still challenging. The preparation of nanogap electrodes using nanoskiving, which is a form of edge lithography, is a fast, simple and powerful technique. This method is an entirely mechanical process which does not include any photo- or electron-beam lithographic steps and does not require any special equipment or infrastructure such as clean rooms. Nanoskiving is used to fabricate electrically addressable nanogaps with control over all three dimensions; the smallest dimension of these structures is defined by the thickness of the sacrificial layer (Al or Ag) or self-assembled monolayers. These wires can be manually positioned by transporting them on drops of water and are directly electrically-addressable; no further lithography is required to connect them to an electrometer.  相似文献   
38.
The standard nanofabrication toolkit includes techniques primarily aimed at creating 2D patterns in dielectric media. Creating metal patterns on a submicron scale requires a combination of nanofabrication tools and several material processing steps. For example, steps to create planar metal structures using ultraviolet photolithography and electron-beam lithography can include sample exposure, sample development, metal deposition, and metal liftoff. To create 3D metal structures, the sequence is repeated multiple times. The complexity and difficulty of stacking and aligning multiple layers limits practical implementations of 3D metal structuring using standard nanofabrication tools. Femtosecond-laser direct-writing has emerged as a pre-eminent technique for 3D nanofabrication.1,2 Femtosecond lasers are frequently used to create 3D patterns in polymers and glasses.3-7 However, 3D metal direct-writing remains a challenge. Here, we describe a method to fabricate silver nanostructures embedded inside a polymer matrix using a femtosecond laser centered at 800 nm. The method enables the fabrication of patterns not feasible using other techniques, such as 3D arrays of disconnected silver voxels.8 Disconnected 3D metal patterns are useful for metamaterials where unit cells are not in contact with each other,9 such as coupled metal dot10,11or coupled metal rod12,13 resonators. Potential applications include negative index metamaterials, invisibility cloaks, and perfect lenses.In femtosecond-laser direct-writing, the laser wavelength is chosen such that photons are not linearly absorbed in the target medium. When the laser pulse duration is compressed to the femtosecond time scale and the radiation is tightly focused inside the target, the extremely high intensity induces nonlinear absorption. Multiple photons are absorbed simultaneously to cause electronic transitions that lead to material modification within the focused region. Using this approach, one can form structures in the bulk of a material rather than on its surface.Most work on 3D direct metal writing has focused on creating self-supported metal structures.14-16 The method described here yields sub-micrometer silver structures that do not need to be self-supported because they are embedded inside a matrix. A doped polymer matrix is prepared using a mixture of silver nitrate (AgNO3), polyvinylpyrrolidone (PVP) and water (H2O). Samples are then patterned by irradiation with an 11-MHz femtosecond laser producing 50-fs pulses. During irradiation, photoreduction of silver ions is induced through nonlinear absorption, creating an aggregate of silver nanoparticles in the focal region. Using this approach we create silver patterns embedded in a doped PVP matrix. Adding 3D translation of the sample extends the patterning to three dimensions.  相似文献   
39.
This study aimed to describe the worst-case scenarios (WCS) of professional soccer players by playing position in different durations and analyse WCS considering different contextual variables (match half, match location and match outcome). A longitudinal study was conducted in a professional soccer team. Data were collected from different WCS durations in the total distance (TD), high-speed running distance (HSRD), and sprinting distance (SPD). A mixed analysis of variance was performed to compare different WCS durations between playing positions and contextual variables, making pairwise comparisons by Bonferroni post hoc test. Positional differences were found for TD (p < 0.01, ωp2 = 0.02), HSRD (p < 0.01, ωp2 = 0.01) and SPD (p < 0.01, ωp2 = 0.02). There was a significant interaction when comparing WCS by match half in TD (F = 6.1, p < 0.01, ωp2 = 0.07) but no significant differences in HSRD (p = 0.403, ωp2 = 0) or SPD (p = 0.376, ωp2 = 0). A significant interaction was identified when comparing WCS by match location in TD (F = 51.5, p < 0.01, ωp2 = 0.14), HSRD (F = 19.15, p < 0.01, ωp2 = 0.05) and SPD (F = 8.95, p < 0.01, ωp2 = 0.01) as well as WCS by match outcome in TD (F = 36.4, p < 0.01, ωp2 = 0.08), HSRD (F = 13.6, p < 0.01, ωp2 = 0.04) and SPD (F = 7.4, p < 0.01, ωp2 = 0.02). Positional differences exist in TD, HSRD, and SPD in match-play WCS, and contextual variables such as match half, match location and match outcome have a significant impact on the WCS of professional soccer players.  相似文献   
40.
The reduced alkalinity required to denature DNA in which bromouracil has replaced thymine has permitted the visualization of the molecular products of transformation of Bacillus subtilis with bromouracil-substituted DNA. The appearance of these molecules suggests that several distinct segments of a single bound DNA molecule can be integrated into the genome of a recipient bacterium.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号